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Abstract

Interval routing is a popular compact routing method for point-to-point networks which found
industrial applications in novel transputer routing technology (May and Thompson, Transputers
and Routers: Components for Concurrent Machines, Inmos, 1991).
Recently much e�ort is devoted to relate the e�ciency (measured by the dilation or the

stretch factor) to space requirements (measured by the compactness or the total number of
memory bits) in a variety of compact routing methods (Eilam, Moran and Zaks, 10th International
Workshop on Distributed Algorithms (WDAG), Lecture Notes in Computer Science, vol. 1151,
Springer, Berlin, 1996, pp. 191–205; Fraigniaud and Gavoille, 8th Annual ACM Symp. on
Parallel Algorithms and Architectures (SPAA), ACM Press, New York, 1996; Gavoille and
P�erennes, Proc. SIROCCO’96, Carleton Press, 1996, pp. 88–103; Kranakis and Krizanc, 13th
Annual Symp. on Theoretical Aspects of Computer Science (STACS), Lecture Notes in Computer
Science, vol. 1046, Springer, Berlin, 1996, pp. 529–540; Meyer auf der Heide and Scheideler,
Proc. 37th Symp. on Foundations of Computer Science (FOCS), November 1996; Peleg and
Upfal, J. ACM 36 (1989) 510–530; Tse and Lau, Proc. SIROCCO’95, Carleton Press, 1995, pp.
123–134). We add new results in this direction for interval routing.
For the shortest path interval routing we apply a technique from Flammini, van Leeuwen and

Marchetti-Spaccamela (MFCS’95, Lecture Notes in Computer Science, vol. 969, Springer, Berlin,
1995, pp. 37–49) to some interconnection networks (shu�e exchange (SE), cube connected
cycles (CCC), butter
y (BF) and star (S)) and get improved lower bounds on compactness in
the form 
(n1=2−�), any � ¿ 0, for SE, 
(

√
n=log n) for CCC and BF, and 
(n(log log n=log n)5)

for S, where n is the number of nodes in the corresponding network. Previous lower bounds
for these networks were only constant (Fraigniaud and Gavoille, CONPAR’94, Lecture Notes in
Computer Science, vol. 854, Springer, Berlin, 1994, pp. 785–796).



For the dilation bounded interval routing we give a routing algorithm with the dilation d1:5De
and the compactness O(

√
n log n) on n-node networks with the diameter D. It is the �rst non-

trivial upper bound on the dilation bounded interval routing on general networks. Moreover,
we construct a network on which each interval routing with the dilation 1:5D − 3 needs the
compactness at least 
(

√
n). It is an asymptotical improvement over the previous lower bounds

in Tse and Lau (Proc. SIROCCO’95, Carleton Press, 1995, pp. 123–134) and it is also better
than independently obtained lower bounds in Tse and Lau (Proc. Computing: The Australasian
Theory Symp. (CATS’97), Sydney, Australia, February 1997).
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1. Introduction

Interval routing is an attractive space-e�cient routing method for point-to-point com-
munication networks. Interval routing was introduced in [17] and generalized in [21].
It has found industrial applications in the C104 Router Chip used in the INMOS T9000
Transputer design [13] and has been exploited in fault-tolerant parallel networks [23].
Interval routing is based on compact routing tables, where the set of nodes reachable

via outgoing links is represented by interval labels. By the compactness we measure
the maximum number of interval labels per link. By the dilation we measure the length
of the longest routing path in the network.
Most of the previous work was oriented towards optimal (shortest path) interval

routing. Several classes of networks have optimal 1-IRS (i.e., routing schemes using
up to 1 interval per link) [22]. But there are also networks without optimal 1-IRS
[7, 6, 18]. To overcome this ine�ciency, multi-label routing schemes were introduced.
General n-node networks can be optimally routed with b n2c-IRS. However, when no
speci�c assumption about the network topology is made, optimal interval routing does
not signi�cantly reduce the bound b n2c. In [4], a technique for proving lower bounds
on the compactness was developed and it has been used in [7] to construct n-node
networks for which each optimal k-IRS requires k =�(n). A similar result for random
networks was obtained in [4].
For certain regular and symmetric networks (such as hypercubes or tori), optimal

k-IRS exist for small k [2, 6]. A natural question arises whether there are also opti-
mal k-IRS for small k for other well-known interconnection networks, such as shu�e
exchange (SE), cube connected cycles (CCC), butter
y (BF) and star networks (S).
In [7], it was proved that these networks have no optimal 1-IRS. We use a technique
(derived from one in [4]) for obtaining lower bounds on compactness for the optimal
IRS on arbitrary networks. We apply this technique to some interconnection networks,
obtaining lower bounds on the compactness in the form 
(n

1
2−�), any �¿ 0, for SE,


(
√
n= log n) for CCC and BF, and 
(n(log log n= log n)5) for S, where n is the number

of nodes in the corresponding network.



Recently, much e�ort has been devoted to relate the e�ciency (measured by the
dilation) to space requirements (measured by the compactness). Each network has a
1-IRS with the dilation bounded by 2D, where D is the diameter of the network [17].
However, there are also networks having long dilation for each 1-IRS. For n-node
networks the lower bound for k-IRS with the dilation 1:75D− 1 was k¿ 2 [18], with
the dilation 1:25D − 1 it was k¿ 3 [19] and with the dilation [(2k + 1)=2k]D−1 and
[(6k+1)=6k]D−1 it was k =
( 3√n) and k =
(√n), respectively [19]. The basic ques-
tion is whether there are interval routing schemes for arbitrary networks attaining short
dilation with a reasonable small compactness. We answer this question negatively 1 by
constructing an n-node network with the diameter D for which each routing scheme
with the dilation 1:5D−3 needs the compactness 
(√n). Moreover, we give a routing
algorithm with the dilation d1:5De and the compactness O(√n log n). It is the �rst
nontrivial upper bound for the dilation bounded interval routing on general networks.
The paper is organized as follows. Section 1 presents the model together with the

description of the routing problem under discussion. Section 2 is devoted to the shortest
path routing in interconnection networks. In Section 2.1 we introduce a technique for
obtaining lower bounds on the compactness for the optimal IRS on arbitrary networks.
In Sections 2.2–2.5 we apply this technique to SE, CCC, BF and S networks. In
Section 3 we investigate interval routing with bounded dilation. In Sections 3.1 and
3.2 we give a new lower bound technique together with lower and upper bounds for
dilation bounded routing on general networks. In Sections 3.3 and 3.4 we relate the
compactness to the dilation for multiglobe networks.

1.1. De�nitions

We assume a point-to-point asynchronous communication network. The network
topology is modeled by a simple connected graph G=(V; E), where V is a set of
vertices (or processors) and E is a set of edges (or bidirectional links) in G. Assume
|V |= n. The diameter of G is denoted as D(G). Given a vertex v∈V , by I(v) we
denote the set of arcs outgoing from v.
Interval routing is based on a suitable labeling scheme for the vertices and edges in

a graph. A vertex label is an element of the set {1; : : : ; n} and an arc label is a cyclic
interval [a; b] with a; b ∈ {1; : : : ; n}. An interval labeling scheme (shortly ILS) of G is
a scheme, where
• a vertex labeling is an assignment of unique labels to vertices of V ;
• for each vertex v∈V , an edge labeling is an assignment of disjoint intervals to arcs
e∈ I(v).
Given an ILS on G, a routing performs in the following way. Let a message

destinated for a vertex w currently reach some vertex u; u 6=w. Determine an arc
e=(u; v)∈ I(u) such that a label of w belongs to an interval assigned at u to e. Trans-
mit a message from u to v.

1 The same conclusion was independently obtained by Tse and Lau [20]. However, they proved weaker
results of compactness 
(log n) for dilation 1:5D−O(1) and of compactness 
(√n) for dilation 1:25D−O(1).



If the edge labeling assigns to each arc at most k intervals, the scheme is called
k interval labeling scheme (shortly k-ILS). If the routing strategy guarantees that the
messages always arrive at their destination, then k-ILS is termed as k-IRS (k interval
routing scheme).
Formally, �=(�; R) is a k-ILS, if

1. a mapping � :V 7→ {1; : : : ; n} is a bijection,
2. a mapping R :V × E 7→ 2V satis�es

• (completeness) for v∈V : V − {v}⊆⋃e∈ I(v) R(v; e);
• (determinism) for v∈V; e1; e2 ∈ I(v); e1 6= e2:R(v; e1) ∩ R(v; e2)= ∅;
• (compactness) for v∈V; e∈ I(v) : {�(u)|u∈R(v; e)} forms up to k compact cyclic
intervals.
Note that R(v; e) must not be speci�ed for v∈V; e =∈ I(v). In the speci�cation of
a k-IRS, the completeness condition is replaced by

• (validity) for v1; vl ∈V there are v2; : : : ; vl−1 ∈V s.t. vl ∈R(vi; (vi; vi+1)) for
16 i6 l− 1;

Given a graph G and a k-IRS � on G, a routing path system (for � on G) is the
set of routing paths for all pairs of vertices in V . The dilation, denoted as dil(G; �),
is the length of the longest path in the routing path system for � on G. A k-IRS is
called optimal, if all paths in the routing path system are the shortest ones. A k-IRS
is called �-bounded (shortly (k; �)-IRS) if the dilation dil(G; �) is limited by �. For
optimal routing the compactness of G is the minimum k such that there is a k-IRS
on G. For �-bounded routing the compactness of G denotes the minimum k such that
there is a (k; �)-IRS on G.
Notations: we use the following symbols: #cS – for the number of occurences of a

symbol c in a sequence S; ⊕ and 	 – for the addition and subtraction modulo some
number n.

2. Shortest path interval routing

This section is devoted to the shortest path interval routing for some interconnection
networks. We present a technique for obtaining a lower bound on the compactness for
the shortest path interval routing on arbitrary graphs. It is derived from a technique in
[4], which is also used in [7, 9]. Then, we apply this technique to certain interconnec-
tion networks (shu�e exchange, cube connected cycles, butter
y and star) to obtain
asymptotical improvements over the previous constant lower bounds [7].

2.1. A lower bound technique for optimal routing

During this subsection, let G=(V; E) be a simple connected graph with maximum
degree � and �=(�; R) be an arbitrary optimal k-IRS of the graph G.
For a vertex v∈V and an arc e∈ I(v), denote S(v; e) the subset of vertices w∈V

which can be reached optimally from v over its outgoing arc e and Z(v; e) the subset
of vertices w∈V such that every optimal path from v to w follows the outgoing
arc e.



In the following theorem we present a lower bound on the number of intervals for an
optimal interval routing scheme in G. The idea of the proof technique is based on the
so called “wq–property”: Given the graph G, we choose two disjoint sets of vertices
W and Q such that for any distinct vertices wi; wj ∈W there is a vertex v∈Q such
that in any optimal routing scheme the messages sent by v to wi and wj are routed
along di�erent outgoing arcs.

Theorem 1. Let G be a graph with maximum degree � and �=(�; R) be an optimal
k-IRS of G. Let Q= {q1; : : : ; ql} and W = {w1; : : : ; wm} be disjoint vertex subsets of
G satisfying wq-property, that means for wi; wj ∈W; wi 6= wj, there is v∈Q such
that for each e∈ I(v) it holds wi =∈ S(v; e) or wj =∈ S(v; e). Then it holds

k¿
m
l�
: (1)

Proof. Assume �=(�; R) is an arbitrary optimal k-IRS for G. W.l.o.g assume that
�(w1)¡�(w2)¡ : : : ¡�(wm). Consider an arbitrary sequence P of all di�erent pairs
(v; e) with v∈Q; e∈ I(v) and denote as p the length of this sequence. Clearly, p6 l�.
A matrix representation of � w.r.t. P and W is an p×m Boolean matrix M (P;W)
with M (P;W)[i; j] = 1 if wj ∈R(v; e) for the ith pair (v; e) in P and M (P;W)[i; j] = 0
otherwise, for every 16 i6p, 16 j6m. Considering the ith row of M for any
16 i6p, the blocks of consecutive 1’s separated by 0’s in the cyclic row correspond
to the intervals assigned to the arc e at v by the optimal k-IRS �, where the ith pair
in P is (v; e). So the number of intervals is equal to the number of occurences of the
pattern 10 in the cyclic row.
In each row of M there are at most k positions at which the pattern 10 matches the

row cyclically. Hence, for each row in M (i.e., each pair v∈Q; e∈ I(v)) it holds
∑

wj ∈W
(wj ∈R(v; e) ∧ wj⊕1 =∈R(v; e))6 k

and consequently

∑
v∈Q

∑
e∈ I(v)

∑
wj ∈W

(wj ∈R(v; e) ∧ wj⊕1 =∈R(v; e))6 kp6 kl�: (2)

On the other hand, provided that
• for each j; 16 j6m, there is v∈Q such that for each e∈ I(v) it holds wj =∈ S(v; e)
or wj⊕1 =∈ S(v; e), and

• for each wj ∈W; v∈Q there is unique e∈ I(v) satisfying wj ∈R(v; e),
we conclude that for each column j in M there is at least one row such that the pattern
10 matches this row at position j, cyclically. Thus, for arbitrary column in M (i.e., for
each wj ∈W ) it holds∑

v∈Q

∑
e∈ I(v)

(wj ∈R(v; e) ∧ wj⊕1 =∈R(v; e))¿ 1:



Fig. 1. Graph SE(3).

Hence

∑
wj ∈W

∑
v∈Q

∑
e∈ I(v)

(wj ∈R(v; e) ∧ wj⊕1 =∈R(v; e))¿m: (3)

Combining inequalities (2) and (3) we get (1).

2.2. A lower bound for shu�e exchange

Let �= ad−1 : : : a1a0 be a binary string. The left cyclic shift and the right cyclic shift
operations on � are denoted as L(�) and R(�), respectively, and the shu�e operation
S(�) is de�ned as S(�)= ad−1 : : : a1â0, where â0 = 1− a0.
The shu�e exchange graph of degree d (denoted as SE(d)) is a graph (V; E), where

V = {u | u∈{0; 1}d} and E= {(u; v) |R(u)= v or L(u)= v or S(u)= v}. An arc (u; v)
is called R-arc, L-arc, S-arc if R(u)= v; L(u)= v; S(u)= v, respectively. For a path C
in the SE(d) let #SC denote the number of S-arcs in this path (similarly we de�ne
#LC; #RC and #L;RC).
The L and R operations do not change the number of ones in a binary string and S

operation changes their amount by ±1, therefore:

Proposition 1. For any path C in the SE(d) from u to v it holds #SC¿ |#1u− #1v|.

It is convenient to represent vertices of the SE(d) as binary strings with cur-
sor denoting the least signi�cant bit cyclically (see Fig. 1 for SE(3)). For example,
11110101=10111110 (the operation of erasing the cursor is denoted by “ 7→” i.e.
11110101 7→ 11110101). Now instead of rotating the string cyclically to the left (to the
right) it su�ces to move the cursor to the right (to the left). Changing the bit pointed
by the cursor corresponds to the shu�e operation.
Consider any path C in the SE(d) from u to v and let k =#RC	 #LC. Manipulating

the cursor we get from u= ud−1 : : : u0 7→ u′ to v= v(d−1)	k : : : v0vd−1 : : : v0	k 7→ v′. If
v′i = vi	k di�ers from u′i = ui then there must be a situation in which the cursor was
pointing at the ith bit. We can formulate the following lemma:



Lemma 1. Let C be a path in the SE(d) from u to v and let k =#RC 	 #LC. Let
x0 = 0 and x1¡ : : : ¡ xt−1 be positions in which u′= u and v′= Lk(v) di�er. The
following inequality holds:

#L;RC¿d− max
i∈{0;:::;t−1}

(xi⊕1 	 xi):

Moreover, if the equality holds, then there are no L-arcs or no R-arcs in the path C.

Proof. For each position xi there must be a situation such that the cursor was pointing
at the xi-th bit. The set of all positions of the cursor is a cyclic interval, therefore at
most maxi∈{0;:::;t−1}(xi⊕1	 xi)− 1 bits have not been pointed by the cursor. To change
the position of the cursor one L or R operation is required and therefore

#L;RC¿d− max
i∈{0;:::;t−1}

(xi⊕1 	 xi):

If there are both L-arcs and R-arcs in C then at least one position becomes pointed
twice and therefore the inequality is sharp.

Theorem 2. For any �¿ 0 there exists d0 such that each optimal k-IRS for any
SE(d) with d¿d0 needs k =
(n

1
2−�) intervals.

Proof. Let d=2(m+ 1)2 + p− 1, where p is the smallest possible. Let A be the set
of all su�xes a of strings of the form ({0; 1}m1)m such that the length of any a is
di�erent from (m + 1)i + 1 for any i. Let B be the set of all pre�xes b of strings of
the form (1{0; 1}m)m such that the length of any b is di�erent from (m+ 1)i + 1 for
any i. Consider the following sets W and Q:

W =1p({0; 1}m1)m0m10m(1{0; 1}m)m;

Q=
⋃
a∈ A

{0p0m(m+1)−|a|−10a0m00m0m(m+1)}∪
⋃
b∈ B

{0p0m(m+1)0m00mb00m(m+1)−|b|−1}:

Clearly, |W |=22m2 and |Q|=2 · (2m2+1− 1). We need to show that W;Q satisfy the
“wq-property” of Theorem 1. Consider w1; w2 from W , w1 6=w2. W.l.o.g. suppose that
w1 and w2 di�er somewhere to the left of the cursor. Then

w1 = 1pr10q0m10ms1 7→ w′
1;

w2 = 1pr21q0m10ms2 7→ w′
2:

Choose the following v from Q,

v=0p0|r1|0q0m00m0|s1| 7→ v′:



Take the following path from v to wi. Move the cursor to the left until it reaches the
same position as is the cursor position in wi, and by the way change all bits in which
w′
i and v

′ di�er. We obtain a path of the length

#1wi − #1v+ d− |q| − m− 1:
Due to the Proposition 1, for any path C from v to wi

#SC¿ #1wi − #1v:
Therefore for any shortest path C from v to wi it must hold

#L;RC6d− |q| − m− 1:
For arbitrary k the Lk(wi) does not contain m + 1 consecutive zeros. If x0 = 0 and

x1¡ : : : ¡ xt−1 are the positions in which v= q0d−|q| and Lk(wi) di�er then
• If xi ¡ xi⊕16d− 1− |q| then xi⊕1 	 xi6m+ 1.
• If xi6d−1−|q| and either xi⊕1 = 0 or xi⊕1¿d−1−|q, then xi⊕1	xi6m+1+ |q|.
• If xi ¿d− 1− |q|, then xi⊕1 	 xi6 |q| − 1.
Therefore

max
i∈{0;:::;t−1}

(xi⊕1 	 xi)6m+ 1 + |q|

and using Lemma 1 we get

#L;RC¿d− |q| − m− 1:
Therefore, for the shortest path it holds

#L;RC =d− |q| − m− 1
and from the second part of Lemma 1 it follows that there are no R-arcs or no L-arcs
in C. In the case with no R-arcs at least d−m cursor moves to the right are required,
because wi contains no m+ 1 consecutive zeros and �rst m+ 1 bits of v are zeros. It
follows, that there is exactly one shortest path from v to w1, which starts with R-arc
and there is exactly one shortest path from v to w2, which starts with S-arc, therefore
the “wq-property” of W;Q from Theorem 1 is satis�ed and the following bound holds
on the number of intervals k necessary for any optimal k-IRS of SE(d):

k¿
|W |
�|Q| =

22·m
2

3 · 2 · (2m2+1 − 1)¿ 2m
2−4:

As d=2(m+ 1)2 − 1 + p; take m= b
√

d+1
2 c − 1. Then

2m
2−4 = 2d(

1
2−O(d−

1
2 ))

and therefore for any positive constant � it holds

k =
(n
1
2−�):



Fig. 2. Graph BF(3).

2.3. A lower bound for butter
y

The butter
y graph of degree d (denoted as BF(d)) consists of d+ 1 levels, each
level containing 2d vertices, each of them labeled with unique binary string of the
length d. An edge connects two vertices in BF(d) if and only if they are in the
consecutive ith and (i + 1)st levels, respectively, and their labels are either equal or
di�er only in the ith bit (graph BF(3) is shown in Fig. 2).
Let �= ad−1 : : : a0 be a binary string and x be a level 06 x6d. It is convenient to

represent the vertex with given binary string � and the level x as binary string with cur-
sor denoting the level: ad−1 : : : axO ax−1 : : : a0. The arcs of BF(d) graph corresponding
to moving the cursor to the left, to the right are called L-arcs, R-arcs, respectively. The
arcs corresponding to moving the cursor to the left, to the right and simultaneously
changing the passed bit are called SL-arcs, SR-arcs, respectively.

Theorem 3. Each optimal k-IRS for any BF(d) needs k =
(
√
n= log n) intervals.

Proof. Let x= bd2 c and y= dd2 e. Consider disjoint sets W and Q:

W = {0; 1}xO {0; 1}y;

Q =
x−1⋃
i= 0

{0; 1}iO 0d−i ∪
y−1⋃
i= 0

0d−iO {0; 1}i :

Clearly |W |=2x+y and |Q|=2x + 2y − 2. We need to show that W;Q satisfy the
“wq-property” of the Theorem 1. Consider w1; w2 ∈W; w1 6=w2. W.l.o.g. suppose that



w1 and w2 di�er somewhere to the left of the cursor. Then for some |�|6 x − 1
w1 = �0s1O r1; w2 = �1s2O r2:

Choose the following v∈Q
v= �O 0d−|�|:

Paths can be viewed as sequences of names of their arcs. If we take a path from v
to wi starting with L or SL arc then removing arcs incident with vertices having the
cursor more to the left than v we obtain a shorter path. If we take a path from v to
w1 starting with SR-arc then we can make it shorter by replacing the �rst arc by R-arc
and removing arcs incident with vertices having the cursor more to the left than v or
at the same position as v. Similarly we can shorten a path from v to w2 starting with
R-arc. Therefore every shortest path from v to w1 starts with R-arc and every shortest
path from v to w2 starts with SR-arc and hence the “wq-property” is satis�ed.
As a consequence of Theorem 1 it holds

k¿
|W |
�|Q| =

2x+y

4 · (2x + 2y − 2)¿ 2b d2 c−3

and thus

k =
(
√
n= log n):

2.4. A lower bound for cube connected cycles

Let �= ad−1 : : : a1a0 be a binary string. Operations of shifting cursor cyclically to
the left and to the right on � are denoted as L(�) and R(�), respectively, and the shu�e
operation is de�ned as S(�)= ad−1 : : : âx : : : a1a0, where âx =1− ax.
The cube connected cycles graph of degree d (denoted as CCC(d), see Fig. 3 which

shows graph CCC(3)) is obtained from a d-dimensional hypercube by replacing each
vertex with a circle of length d. It consists of d2d vertices. Each vertex can be labeled
with a binary string of length d and a cursor position in this string. An arc connects
two vertices u; v if and only if v can be obtained from u by the means of cyclically
shifting the cursor to the left or right (L- and R-arcs) or by changing the bit pointed
by cursor (S-arcs).
The notation is as follows: having a binary string �= ad−1 : : : a1a0 and a cursor

position 06 x¡d the vertex is denoted as ad−1 : : : axax−1 : : : a1a0.

Theorem 4. Each optimal k-IRS for any CCC(d) needs k =
(
√
n= log n) intervals.

Proof. Let d=2x + 3 + a, where a∈{2; 3}. Consider following sets W and Q.

W = 0{0; 1}x1a{0; 1}x00

Q =
x−1⋃
i= 0

0{0; 1}i 00d−i−2 ∪
x−1⋃
i= 0

0d−i−10{0; 1}i00:



Fig. 3. Graph CCC(3).

Clearly |W |=22x and |Q|=2(2x − 1). We need to show, that W;Q satisfy the “wq-
property” of Theorem 1. Consider w1, w2 from W , w1 6=w2. W.l.o.g. suppose that w1
and w2 di�er somewhere on the �rst x + 1 positions from left. Then

w1 = 0q0p11ar100; w2 = 0q1p21ar200:

Choose the following v from Q:

v=0q00d−|q|−2:

Clearly no shortest path from v to w1 starts with an S-arc. Thus it is su�cient to show
that each shortest path from v to w2 starts with an S-arc.
Take the following path from v to w2. Shift the cursor to the right d− |q| − 2 times

changing all bits in which v and w2 di�er. The length of this path is d−|q|−2+H (v; w2);
where H (u; v) denotes the Hamming distance between u and v, i.e. the number of bits
in which they di�er. Therefore for every optimal path C between v and w2 it holds
that |C|6d− |q| − 2 + H (v; w2). Clearly there must be at least H (v; w2) S-arcs in C
and therefore there are at most d− |q| − 2 non-S arcs.
Because v and w2 di�er in 2 + x-th bit then there must be a vertex u on the path

C such that the cursor is on the position 2 + x. Clearly at least d− |q| − x − 4 non-S
arcs are needed to move the cursor from v to u and at least 2 + x of them to move
the cursor from u to w2. Thus there are exactly d − |q| − 2 non-S arcs in C and the
only way to achieve this is when C consists exclusively from R- and S-arcs. Hence C
must start with an S-arc.



Fig. 4. Graph S(3).

Now following Theorem 1 we get for the number of intervals

k¿
|W |
�|Q| =

22x

3 · 2 · (2x − 1)¿
2x−1

3
:

As x= bd−52 c and n=d · 2d it holds that

k =
(
√
n=log n):

2.5. A lower bound for star

The star graph of degree d (denoted as S(d)) has d! vertices, each vertex being
labeled by a unique permutation of the set {1; : : : ; d}. An edge connects two vertices
in S(d) if and only if their labels can be mutually obtained by interchanging the �rst
element with another one. Graph S(3) is shown in Fig. 4.
Let Pd be the set of all permutations of {1; : : : ; d}. By ◦ we denote the standard

composition operation, where (�◦�)(x)= �(�(x)) for some element x. By (a0; : : : ; ak−1)
we denote a cycle, i.e. a permutation � such that �(ai)= ai⊕1 and �(x)= x for all other
elements.
Formally, S(d) is a graph (Pd; E), where E= {(u; v) | v= u◦(1; j) for j∈{2; : : : ; d}}.

Proposition 2. Let S(d)= (V; E). For each vertex v∈V the projection Sv of the
form Sv(w)= v−1 ◦w for w∈V is an automorphism of S(d) which maps v onto the
identity permutation �id.

Proposition 3 (Akers, Harel and Krishnamurthy [1]). The distance from a vertex u to
the identity permutation �id is

d(u; �id)= c + m−
{
0 for u(1)= 1;

2 for u(1) 6=1;



where c is the number of cycles with the length at least two of u and m is the number
of elements in these cycles (i.e.; m= |{i∈{1; : : : ; d} | u(i) 6= i}|).

Theorem 5. Each optimal k-IRS for any S(d) needs k =
(n(log log n=log n)5) inter-
vals.

Proof. Consider disjoint sets of vertices W and Q

W = {(1; d) ◦ (x1; : : : ; xd−2) | {x1; : : : ; xd−2}= {2; : : : ; d− 1}};
Q = {(1; a) | a∈{2; : : : ; d− 1}}:

Clearly, |W |=(d− 3)! and |Q|=d− 2. We need to show that W , Q satisfy the “wq-
property” of Theorem 1. Consider w1; w2 ∈W , w1 6=w2. Then there exist three di�erent
elements a; b1; b2 ∈ {2; : : : ; d−1} such that w1(b1)=w2(b2)= a. Choose v=(1; a)∈Q.
In order to show the “wq-property” we prove that for each arc e at v it holds either
w1 =∈ S(v; e) or w2 =∈ S(v; e).
Following Proposition 2 it follows that the distance d(wi; v)=d(v−1 ◦ wi; �id). For

i∈{1; 2} it holds v−1 ◦wi=(1; a) ◦ (1; d) ◦ (bi; a; x1; : : : ; xd−4)= (1; d; a; x1; : : : ; xd−4; bi)
for some x1; : : : ; xd−4. Moreover wi(1)=d 6= a= v(1) and therefore following Proposi-
tion 3 we obtain d(wi; v)=d− 1.
Each arc e outgoing from v is of the form e=(v; v ◦ (1; l)), where 1¡l6d. Con-

sider the edge e=(v; v ◦ (1; l)), where 1¡l6d and l 6= bi. We show that d(wi; v ◦
(1; l))=d¿d − 1=d(wi; v) and hence wi =∈ S(v; e). Let wi be of the form (1; d) ◦
(bi; a; x1; : : : ; xd−4), then (v◦(1; l))−1◦w1 = (1; l)◦(1; a)◦(1; d)◦(bi; a; x1; : : : ; xd−4). Be-
cause of the de�nition of W and Q there are only three possibilities for l:
l = xj for some j; l= a or l=d. Applying Propositions 2 and 3 we get for each
case d(wi; v ◦ (1; l))=d.
Because b1 6= b2, for each arc e outgoing from v it holds either w1 =∈ S(v; e) or

w2 =∈ S(v; e). Thus we can apply Theorem 1 to obtain

k¿
|W |
�|Q| =

(d− 3)!
(d− 1)(d− 2)¿

(d− 5)!
6

which gives

k =


(
n
(
log log n
log n

)5)
:

2.6. Summary

In Table 1 we summarize results from Section 2 concerning lower bounds on the
number of intervals needed for the shortest path interval routing for certain hypercube-
like interconnection networks.



Table 1

Interconnection network Compactness

Shu�e-exchange 

(
n1=2−�

)
Cube-connected-cycles 


(√
n

log n

)
Butter
y 


(√
n

log n

)
Star graph 


(
n
(
log log n
log n

)5)

3. Interval routing with bounded dilation

Recall that a k-IRS � of a graph G=(V; E) is �-bounded if for every pair of
vertices u; v from V the length of the routing path from u to v is limited by � (i.e.
dil(G; �)6 �). Denote �-bounded k-IRS as (k; �)-IRS.
Note that usually the number of intervals is expressed in terms of the size of the

graph and the length of the routing path is expressed in terms of the diameter of the
graph.
The notion of �-boundary was studied in [16–19]. Each graph has (1; 2D)-IRS [17]

and can be optimally routed with b n2c intervals. Moreover, there are graphs for which
(1:75D−1)-bounded routing requires at least 2 intervals [18] and (1:25D−1)-bounded
routing at least 3 intervals [19]. The basic question is whether one can hope to �nd an
interval routing scheme for arbitrary graphs with a short dilation and simultaneously
with a reasonable small number of intervals. The main result of this section is a
negative answer to this question, stating that there are graphs for which a routing
with the dilation bounded by 1:5D − 3 needs 
(

√
n) intervals. We also show that

O(
√
n log n) intervals are su�cient for routing in arbitrary graphs with the dilation

d1:5De.
The class of multiglobe graphs has been studied in connection with the lower bound

proofs for dilation bounded interval routing in [18]. Exploiting techniques from sub-
section 3.1 introduced for general graphs we give asymptotically optimal trade–o�s
between the dilation and the compactness for some special classes of graphs. We
proved the compactness threshold �(

√
n) for the dilation 1.25D − 1 on multiglobe

graphs and the same threshold �(
√
n) for the dilation D on planar multiglobe graphs

(so called globe graphs). Moreover, for globe graphs nearly-optimal (in the sense of
(1 + �)D-bounded for any given constant �¿ 0) routing is achievable with only a
constant number of intervals.

3.1. A lower bound on dilation bounded interval routing

Assume B⊆{0; : : : ; n − 1}. A set A is called k-interval representable (shortly k-I)
in the set B if A is a subset of B and there are k cyclic intervals I1; : : : ; Ik such that
(
⋃k
i= 1 Ii) ∩ B=A.



Assume that the cyclically ordered elements of B are b0 ≺ b1 ≺ : : : ≺ bs−1 ≺ b0.
Then the successor of bi in B is bi⊕1. An element a of A, A⊆B, is called an isolated
element in A w.r.t. B if its successor in B is not in A; otherwise a is called an inner
element in A w.r.t. B. It is obvious that if A is k-I w.r.t. B then the number of isolated
elements in A is at most k and that there are at least |A| − k inner elements in A.

Lemma 2. Assume M = {ai; j | 16 i6 t; 16 j6 s} is the s × t matrix of distinct
elements from {0; : : : ; n− 1} such that every column Ci= {ai; j | 16 j6 s} and every
row Rj = {ai; j|16 i6 t} is k-I in M . Then the following inequality holds

k¿
st
s+ t

:

Proof. Let P be the number of isolated elements in sets R1; : : : ; Rs w.r.t. M . In every
k-I set there are at most k isolated elements, so we have

P6 sk:

Similarly, there are at least t(s − k) inner elements in sets C1; : : : ; Ct and one can
observe that each of them is isolated in its row. Thus it follows

P¿ t(s− k):
Combining both inequalities we get

k¿
st
s+ t

:

Further, we construct a graph F(s; t; r) such that due to the Lemma 2 each interval
routing scheme on F with the dilation bounded by 1:5D− 3 requires at least st=(s+ t)
intervals.
Graph F(s; t; r) is de�ned as follows. There are st “middle” vertices {ai; j} which

form s× t rectangle, t “column” vertices {ci}, s “row” vertices {bj}, and two special
vertices b; c. A column vertex ci is connected with any vertex from the ith column of
the rectangle via unique path of the length r and a row vertex bj is connected with any
vertex from the jth row of the rectangle via unique path of the length r. The vertex c
is connected with all “column” vertices ci and the vertex b is connected with all “row”
vertices bj. As an example graph F(3,3,2) is shown in Fig. 5.
Graph F(s; t; r) has (2r− 1)st+ s+ t+2 vertices and 2str+ s+ t edges. Its diameter

is 2r + 2.

Theorem 6. There is a graph F such that each (k; 1:5D−3)-IRS of F needs k =
(√n).

Proof. Assume that �=(�; R) is (k; 1:5D − 3)-IRS of F(s; t; r). As � is (1:5D − 3)-
bounded, for all columns it holds {ai; j | 16 j6 s}⊆R(c; (c; ci)) and for all rows it
holds {ai; j|16 i6 t}⊆R(b; (b; bj)). Otherwise the length of the routing path from c to
ai; j and from b to ai; j would be at least 3r+1, thus longer than 1:5D−3. Now, take s×v



Fig. 5. Graph F(3; 3; 2).

matrix M = {�(ai; j) | 16 i6 t; 16 j6 s}⊆{0; : : : ; n−1}, where n=(2r−1)st+s+t+2;
with columns Ci= {�(ai; j) | 16 j6 s} and rows Rj = {�(ai; j) | 16 i6 t}, which all
are k-I in M . Applying Lemma 2, we get k¿ st=(s + t). Choosing s= t=2(k + 1)
we get a contradiction. Hence, there does not exist (1:5D − 3)-bounded k-IRS of the
graph F(2k + 1; 2k + 1; r) and therefore the claim of the theorem holds.

Proposition 4. There is (2; 1:5D)-IRS of F(s; t; r).

This can be proved using b and c as cluster centers in the proof of the Theorem 7.
The resulting scheme uses only 2 intervals.

3.2. An upper bound on the dilation bounded interval routing

In this subsection we show that every graph has interval routing with the dilation
d1:5De using only O(√n log n) intervals. We need two following lemmas.
Lemma 3. For n∈N and m¿

√
n ln n it holds

( n−m
m

)
¡
( n
m

)
=n.

Proof. For m¿
√
n ln n it holds

nm

(n− m)m ¿
(

n
n− m

)m
=

((
1 +

m
n− m

)n=m)m2=n
¿ em

2=n¿ n

where nm stands for n(n− 1) : : : (n− m+ 1). Multiplying both sides of the inequality
by
( n−m

m

)
=n we obtain the claim of the lemma.



Lemma 4. Let G=(V; E) be a graph. There is a set C ⊆V such that |C|=
O(
√
n log n) and for each v∈V it holds d(v; C)6 d 12De.

Proof. Let V = {1; : : : ; n} and m= d√n ln ne. It holds ( n−mm ) ¡ ( n
m

)
=n. For a vertex

v∈V de�ne the set Vv⊆V as a set of vertices whose distance from v is at most d 12De.
If there exists v∈V such that |Vv|6m, then it is obvious that we can set C =Vv and
the lemma holds. If such v does not exist (i.e., for all v∈V it holds |Vv|¿m) we
prove the lemma by contradiction. Suppose that the lemma does not hold. If we take
the union of any m sets from V1; : : : ; Vn, then at least one element from V is not
contained in this union. There are

( n
m

)
possibilities how to choose these m sets and

from the pigeon-hole principle follows that there exists a∈V such that a is missing
in at least

( n
m

)
=n choices. On the other hand |Va|¿m, therefore a is not contained in

at most n−m sets and the number of choices with a missing is at most ( n−mm ). From
this we get inequality

( n−m
m

)
¿
( n
m

)
=n, which is a contradiction.

Theorem 7. Let G=(V; E) be a graph. There is an interval routing scheme of G
with the dilation d1:5De using only O(√n log n) intervals.
Proof. Take the set C = {c1; : : : ; cm}⊆V from the previous lemma. Divide the set
V into non-intersecting subsets R1; : : : ; Rm such that for any vertex v∈Ri it holds
d(ci; v)6 d 12De and the subgraph of G induced by Ri (denoted as G=Ri) is connected
for all i∈{1; : : : ; m}. Subgraphs G=Ri are called clusters and vertices ci cluster centers.
Given the set C we can �nd this division as follows. Set ∀i∈{1; : : : ; m} : Ri := {ci}.
Then repeat d 12De times: for each i ∈ {1; : : : ; m} set Ri :=Ri ∪{free vertices adjacent
to Ri}.
Construct a BFS spanning tree Ti of all G from each center ci ∈C. First, create a

tree-labeling scheme on the subtree Ti=Ri from the root ci following the technique from
[17] (two intervals per arc are required). Vertices in Ri will have consecutive labels
for all i∈{1; : : : ; m}. Then, assign an interval corresponding to Ri to each arc of Ti not
belonging to the cluster G=Ri and oriented towards the center ci. Such interval routing
scheme has compactness at most m+ 1 (because each arc belongs to at most m trees,
in m − 1 trees it is assigned 1 interval and in one tree it is assigned two intervals).
The dilation is at most D + dD=2e= d1:5De.

3.3. Compactness versus dilation for multiglobe graphs

The multiglobe graph (denoted as M (s; t; r)) is obtained from the complete bipartite
graph Ks; t by replacing all edges by unique paths of the length r (see Fig. 6 for
example). Hence, Ks; t ≡M (s; t; 1). The multiglobe graph was introduced in [18]. Its
diameter is 2r, it has (r − 1)st + s+ t vertices and rst edges.
Let vertices from one bipartition be u1; : : : ; us and from the other be v1; : : : ; vt . Take

r even and the vertex in the middle of the path from ui to vj denote as ai; j.
The complete bipartite graph M (s; t; 1) can be shortest path routed with 1 interval

[21]. By applying Lemma 2 on multiglobe graphs we get the following proposition.



Fig. 6. Multiglobe M (4; 3; 2).

Theorem 8. There is a multiglobe graph M such that each k-IRS of M with the
dilation bounded by 1:25D − 1 needs k =
(√n).

Proof. We will show that for a multiglobe graph M (s; t; r); r¿ 2, every k-IRS with
the dilation bounded by 1:25D − 1 requires st=(s + t) intervals. Consider a matrix
A= {�(ai; j)|16 i6 s; 16 j6 t}. Its rows and columns are k-I in A, because in
(1:25D − 1)-bounded routing a vertex ai; j is routed along the �rst arc on the path
from u1 to vj and also along the �rst arc on the path from v1 to ui. As conditions of
Lemma 2 are satis�ed, the bound follows from

k¿
st
s+ t

:

Theorem 9. There is a 1:25D-bounded 2-IRS of the multiglobe graph M (s; t; r).

Proof. Divide the M (s; t; r) graph into s + t disjoint clusters with cluster centers
v1; : : : ; vt ; u1; : : : ; us and the radius at most D=4. Label clusters in the order as their
centers appear in the previous sentence, following [17]. Notice that vertices in the
union of clusters with centers v1; : : : ; vt (u1; : : : ; us) form an interval.
Let e be an arc from the cluster with the center vi and oriented towards the vertex uj.

One interval on e is used for routing messages to vertices from the cluster vi reachable
from vi via this arc. Second interval is used for vertices from the cluster uj. In the
case j=1 labels of vertices in clusters vi+1; : : : ; vt are added to this interval, in the case
j= t labels of vertices in clusters v1; : : : ; vi−1 are added to this interval. Any arc f from
the cluster vi oriented towards vi will be labeled by the complement of the label of
the arc emanating from the same vertex as f. Labeling of the arcs in clusters with
centers u1; : : : ; us is symmetric. The resulting routing scheme has the dilation bounded
by 1:25D and uses only two intervals.



Theorem 10. For any �¿ 0 there exists a k-IRS of the M (s; t; r) with the dilation
bounded by (1 + �)D and k = d1=2�emin (s; t).

Proof. W.l.o.g. suppose that t=min(s; t). Call vi-
ap a tree rooted at vi with height
r − 1 for i 6=1 and with height r for i=1. Divide each 
ap into strips of height
b2�rc. The number of strips in any 
ap is bounded from above by d1=2�e. Label the
vertices by numbers 1; : : : ; |V | in the following order: for each 
ap take its strips in
top-down manner, in every strip take its paths in left-right manner and label each path
in top-down manner.
Any arc e emanating from any vertex ui directs to a di�erent 
ap. Labels in each


ap form one interval, hence at most one interval is needed on this arc. Along any arc
e outgoing from any vertex vi messages to vertices lying on a path to certain uj-vertex
and to those lying on the paths from this uj to all other vk ’s are routed, which gives
at most d1=2�et intervals. Consider any arc e oriented towards an uj-vertex. Along this
arc messages to vertices lying on the path towards uj, to vertices lying on the paths
from uj to roots of all other 
aps and to certain number of consecutive strips from
the top of all other 
aps are routed. This requires at most d1=2�et intervals and the
dilation is at most D + the height of the strip which is at most (1 + �)D because
D=2r. Any arc oriented towards an vi vertex has complementary labeling as some arc
oriented towards some uj vertex thus requiring the same number of intervals.

Note that for any constant �; 0¡�¡0:25, there is a (k; �)-IRS of M (s; t; r) for
k =O(min(s; t)) and �=(1+ �)D, so the lower bound in Theorem 8 is asymptotically
tight.

3.4. Compactness versus dilation for globe graphs

The globe graph (denoted as Grs ; r odd) is a planar multiglobe graph M (s; 2; d r2e)
(see Fig. 7 for example). So it has a vertex set consisting of rs vertices denoted as
ai; j, which form an r × s rectangle and two additional vertices b and c. Vertices in
columns are connected to form a line segment graph of the length r and the vertex b
(c) is connected to vertices a1; i(ar; i) for all i∈{1; : : : ; s}.

Fig. 7. Globe graph G54 .



The class of globe graphs was introduced in [16] and has been studied in connec-
tion with the compactness and the dilation in [11, 16, 19]. In [16] it was proved that
the shortest path routing on globe graphs cannot be achieved with 1-IRS. In [11] it
was shown that the shortest path k-IRS on globe graphs Gs

2

s needs k =
( 3
√
n) inter-

vals. In [19] it was shown that on globe graphs (k; 2k+12k D − 1)-bounded IRS needs
k =
( 3

√
n) intervals and (k; 6k+16k D−1)-bounded IRS needs k =
(√n) intervals. There

is an asymptotically tight trade-o� between the compactness and the dilation for globe
graphs. Unlike multiglobes, while optimal routing requires a high number of intervals,
nearly optimal routing is achievable with only a constant number of intervals.

Theorem 11. Every optimal IRS of the globe graph Gss+1 needs s=4 intervals.

Proof. Let �=(�; R) be an optimal k-IRS on Gss+1. Assume A= {�(ai; j) | i; j∈
{1; : : : ; s}}. Vertices from the jth column must be routed at the vertex b along the
arc (b; a1; j), therefore every column Kj = {�(ai; j) | 16 i6 r} is k-I in A. We denote
intervals representing the jth column Kj as I 1j ; : : : ; I

k
j .

For any row index p ∈ {1; : : : ; s} let’s cut the jth column {ai; j | 16 i6 r} into
sets Bj = {ai; j | i¡p} and Cj = {ai; j | i¿p}. Every interval has at most two endpoints,
therefore for at least s − 2k p’s we will cut some interval I xj such that some of the
elements of the set {ai1 ; j ; : : : ; aiq; j | i1 ¡ : : : ¡ iq; �(i1); : : : ; �(iq)∈ I xj } will fall into Bj
and some into Cj. Such a cut will be called a good cut, because if we take interval
representations of any sets B and C satisfying Bj ⊆B and Cj ⊆C, then at least one
interval in these representations must end in I xj .
There are at least s(s− 2k) good cuts in the �rst s columns and thus there exists a

row indexp such that at least s− 2k columns have a good cut forp.
Now consider arcs (as+1−p; s; as−p; s)= e1 and (as+1−p; s; as+2−p; s)= e2. Let B and

C be sets of vertices routed from as+1−p; s along e1 and e2, respectively. Vertices
Bj = {ai; j | i¡p} must be routed along e1 and vertices Cj = {ai; j | i¿p} must be routed
along e2 for any j ∈ {1; : : : ; s}. If we take interval representations of B and C, at least
s− 2k intervals must end in cut intervals, therefore k¿ s−2k

2 and from that it follows
k¿ s

4 .

The previous claim is a consequence of a more general result in [19]. We included
a new proof of this claim as it is simpler and can be directly exploited in the fol-
lowing note. The graph Gss+1 is a series-parallel graph requiring

√
n=4 intervals. This

is an improvement over the previous lower bound in the form
√
n=72 from [19]. The

graph Prs is obtained from the globe graph Grs by replacing vertices b and c by paths
b1; : : : ; bs and c1; : : : ; cs and connecting bj with a1; j and cj with ar; j (see Fig. 8 for
an example). The graph Pss+1 is the �rst example of a bounded degree series-parallel
graph of compactness 
(

√
n). Pss+1 is also another example (see [9]) of a bounded

degree planar graph requiring
√
n=4 intervals. However, the question of expressing the

exact compactness for bounded degree planar graphs is still elusive.



Fig. 8. Graph P54 with similar optimal routing properties as G
5
4 .

Theorem 12. There is an optimal IRS of Grs with min(s; r) intervals.

Proof. Along the arc e from ai; j oriented towards b, messages to vertices b; a1; j ; : : : ;
ai−1; j and a1; k ; : : : ; ar+1−i; k for all k 6= j should be routed. Along the arc e from c to
ar;i messages to vertices a1; i ; : : : ; ar; i should be routed. For other arcs the situation is
symmetric. If we label vertices in order b; a1;1; : : : ; a1; s; : : : ; ar; s; c then r intervals will
su�ce. If we label them in order b; a1;1; : : : ; ar;1; : : : ; ar; s; c then s intervals will su�ce.

Theorem 13. There is (1; 1:5D)-IRS of Grs .

Proof. Label b by 1 and c by sr + 2. Then label column 1 top down, next column 2
top down, etc. using labels 2 up to sr+1 in order. Consider that the vertex b belongs
to the �rst column and the vertex c belongs to the last column. Arcs (b; a1; j) and
(c; ar; j) will be assigned interval corresponding to the jth column for all j∈{1; : : : ; s}.
From some vertex ai; j to a vertex in the same column, routing path follows shortest
path, from some vertex ai; j to a vertex in other column, routing path approaches b or
c, depending on which is closer to ai; j. This can be arranged using only one cyclic
interval and the resulting routing is 1.5D-bounded.

As a consequence of Theorem 10 or of Theorem 13 in [19] it holds for globe graphs:

Corollary 1. For arbitrary �¿ 0 there is (1+�)D-bounded IRS of Grs with a constant
number of intervals.

3.5. Summary

Table 2 summarizes results from Section 3 on bounds for the number of intervals
needed for IRS with the bounded dilation.

4. Conclusion

We proved that large compactness is needed for optimal interval routing on certain
regular and symmetric topologies used in parallel architectures. The main question



Table 2

Graphs Dilation Compactness

arbitrary graphs [17] 2D 1

arbitrary graphs 1:5D O(
√
n log n)

F 1:5D 2
F 6 1:5D − 3 
(

√
n)

Multiglobe [18] 6 1:75D − 1 ¿ 1
Multiglobe 1:25D 2
Multiglobe 6 1:25D − 1 
(

√
n)

Globe 1:5D 1
Globe [16] 6 1:5D − 1 ¿ 1
Globe [19] (1 + �)D O( 1� )
Globe [19] D 
(

√
n)

remains whether this phenomenon holds also for nearly-optimal interval routing on
these topologies.
We also improved a lower bound on compactness for the dilation bounded interval

routing on general n-vertex graphs. 2 The complementary upper bound shows that for
interval routing with the dilation d1:5De the compactness is O(√n log n). The main
unresolved problem is to exhibit a tight trade-o� between the dilation and the com-
pactness for general graphs.
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